Costs of Measuring Soil Carbon

Third Annual Conference on Carbon Sequestration
May 3rd, 2004
Alexandria Virginia

Siân Mooney, Ph.D.

Department of Agricultural and Applied Economics
University of Wyoming

Collaborators

John M.Antle (Montana State University)

Susan M. Capalbo (Montana State University)

Keith Paustian (Colorado State University)

Outline

- Role of Contract Design
- How Measure Soil C?
- Factors Affecting Measurement Costs
 - Project Size
 - Acceptable Error
 - Confidence Level
 - Time period/frequency of measurement
 - C Variability
- Measurement costs as percentage of total project costs

Measurement Costs and Overall Contract Costs

Total Cost of Purchasing Credits (Price * Number of Credits)

+

Total Cost of Measurement/Monitoring

+

Other

Total Contract Costs

Role of Contract Design

Cost category		Per- hectare contract
Legaldrawing up contractsnegotiating with producers	X	X
Aggregation - aggregating individual producers into larger contract groups	X	X
Monitoringverifying producers have made a change in land use	X	X
Measuring - estimating the number of C credits sequestered over the contract period	X	Unnecessary

New Thinking

Measurement - General

- Predictive biophysical models estimate
 ΔC
- Measure baseline statistical sampling/field samples/lab testing
- Measure C periodically over duration of contract

Measure C at end of contract

Model structure

Econometric Models (output supply, input demand)

Century Ecosystem Model (NREL)

parameter estimates

carbon estimates

Land use simulation
-stochastic output and input prices
-policy designs and payment levels

Project Size

Carbon Variability

Error and Confidence Interval

Duration of Project

- Costs increase at a decreasing rate as you increase the duration of a project
- Costs level off faster for small projects

Measurement as Percent of Total Contract Cost

- High credit price
 - want to spend more on measurement to ensure that all credits are counted

- Low credit price
 - implement a measurement scheme with larger error (less expensive)

Summary

- Costs affected by many factors
- Need to be aware of how these factors affect costs when purchasing credits
- Costs increase with:
 - Increasing cost per sample, frequency of sampling, carbon variability, confidence level
 - Decreasing project size, acceptable level of error

Funding Acknowledgements

 This material is based upon work supported by the Cooperative State Research, Education, and Extension Service, U.S. Department of Agriculture

 Agreement 2003-35400-12907 and Agreement 2001-38700-11092

For More Information

Siân Mooney
Department of Agricultural
and Applied Economics
University of Wyoming
Laramie, 82071

E-mail: smooney@uwyo.edu

Web: http://agecon.uwyo.edu

Phone: (307)-766-2389

